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EFFECT OF COEFFICIENT CHANGES ON- STABILITY OF LINEAR
RETARDED SYSTEMS WITH CONSTANT TIME DELAYS

L. Keith Barker
Langley Research Center

SUMMARY

In previous studies, the effects of time delays on the stability of
differential-difference equations of the retarded type (retarded systems) have
been examined. After the stability condition of the retarded system is deter-
mined for a fixed set of time delays, it may be of interest to determine the
further change in the stability condition as a system coefficient is varied,
with the time delays held fixed. This latter problem is examined in this paper
by casting it in a form for which the t-decomposition method is applicable. The
approach involves a rearrangement of the characteristic equation so that the
coefficient plays a role similar to a time delay in the t-decomposition method.
Then, the t-decomposition method is applied to obtain the changes in the stabil-
ity condition as the coefficient is varied.

The method is applied to a second-order differential equation with constant
time delays in the velocity and displacement terms. Intervals of the coeffi-
cient over which the system is stable and unstable are computed.

INTRODUCTION

A differential-difference equation of the retarded type (retarded system)
is a differential equation in which the dependent variable and all but the high-
est order derivative may contain time delays. (There is at least one delay.)
Mathematical treatments of retarded systems can be found in references 1, 2
and 3, for example.

’

Some physical problems are modeled as a homogeneous retarded system, and
the stability of the system is desired. Also, the stability of the homogeneous
retarded system is related to the asymptotic stability of some nonlinear control
problems involving time delays (ref. 4) and to the valid application of general-
ized harmonic analyses to retarded systems (ref. 5).

A homogeneous retarded system, which is linear and time-invariant, is asymp-
totically stable if and only if all the roots of the characteristic equation
have negative real parts (ref. 1). The characteristic equation is transcenden-
tal and has an infinite number of roots. Therefore, it is not possible to com-
pute all these roots to determine whether they have negative real parts. How-
ever, it is possible to compute the number of roots with zero or positive real
parts.



With zero delays, the characteristic equation reduces to a polynomial,
which has only a finite number of roots. With sufficiently small positive time
delays, the characteristic equation has essentially these same finite roots,
plus an infinite number of roots with arbitrarily large negative real parts
(refs. 6 and 7). Hence, with sufficiently small positive time delays, the sta-
bility condition (stable or unstable) of the retarded system is the same as the
stability condition of the system with zero delays, and the roots with nonnega-
tive real parts are known. As the delays are increased from zero, the roots of
the characteristic equation begin to move, generating root-locus curves. In
order for the stability condition to change, a root-locus curve must intersect
the imaginary axis. The t-decomposition method of reference 8 has been shown to
be a convenient weans for determining the directions in which the root-locus
curves cross the imaginary axis. Hence, the change in the stability condition
can be computed as the delays are varied, one at a time, from zero to their
final desired values (ref. 7).

Another stability problem occurs whenever a coefficient in the character=
istic equation of a retarded system must be varied. The purpose of this study
is to show how the r~decomposition method may be used to solve this stability
problem. The proposed technique involves a rearrangement of the characteristic
equation so that the coefficient to be varied appears as a time delay. Then,
the (-decomposition method is applied to obtain changes in the stability condi-
tion as the coefficient is varied over a range of values.

SYMBOLS
A,A, N x N matrices of real constants

f(s;ty) function of s in equation (3)

I N x N identity matrix

Im{ ) imaginary part of ( )

i imaginary unit, J:T

) integer index (subscript)

K system coefficient

Kn final desired value of K

K* value of K at a point of intersection of a root-locus curve with

the imaginary axis

L(s) characteristic quasi-polynomial
N dimension of. x(t) in equation (1)
N(K) number of roots of W(s) with positive real parts



N(1) number of roots of w2(s) with positive real parts

Re( ) real part of ( )

s complex variable, o + iw

T number of time delays in system
t time

W(s) function of s in equation (7)
W5(s) function of s in equation (6)
X scalar function of time

; N x 1 state vector

1,05 real numbers

€ small positive number

o real part of complex number s
T,Ty constant time delays

T* value of 1 at a point of intersection of a root-locus curve with

the imaginary axis

w imaginary part of complex number s
W an upper bound on ® in L(s) = 0, where s = iw
w¥* value of w at a point of intersection of a root-locus curve with

the imaginary axis

ANALYSIS
Retarded System

A class of homogeneous dynamical systems, called retarded systems, can be
described by the following equation:

3 » T,
x(t) = A& x(t) + 2 A, x(t-1,) (1)
%=1

-
where x(t) is an N x 1 vector, A and Al are N x N constant matrices,
and Ty 2 0 are constant time delays.



The characteristic equation associated with equation (1) is

T -Ty8
L(s) = det|sI - A - :E Age =0 (2)
=1

where s = o + iw is a complex variable. It is known (ref. 1) that ;(t) + 0
as t + » (asymptotically stable) if and only if all the roots of equation (2)
have negative real parts (o < 0).

The roots of equation (2) occur in complex-conjugate pairs, so that only
roots in the upper half of the complex s-plane are considered herein; that is,
w 2> 0.

Change in Stability With Coefficient Changes

It is assumed that the retarded system is known to be either stable or
unstable for a fixed set of time delays 12(1 a1, 2, ..., T), and that the
number of roots with positive or zero real parts has been determined. This
information can be obtained by using the 1-decomposition method of stability
analysis (ref. 7). Now, suppose it is desired to know how the stability further
changes as a system coefficient K 1is changed. Toward this end, the character-
istic equation (2) is written as

£(s;1,) = Ks (3)

where K 1is the system coefficient of interest, and f(s;r,) contains the
remaining part of the characteristic equation. The characteristic equation
can be solved for K and the resulting equation multiplied by s to obtain
equation (3).

In order for the number of roots with positive real parts of equation (3)
to change as K 1is continuously changed, a root-locus curve must intersect the
imaginary axis. At an intersection point (s o iw), the following equations must
be satisfied:

Re[£(iust,)] = O (4)
and
K = < In[f(iaj7,)] (5)
w

Equations (4) and (5) are the real and imaginary parts of equation (3) with

s = iw. Thus, the points where the root-locus curves of equation (3) cross the
imaginary axis (eq. (4)) and the values of K (eq. (5)) for which these inter-
section points occur can be calculated. The behavior of the root-locus curves
at the intersection points determines the change in the number of roots with
positive real parts. Specifically, it is desired to know in which directions the
root-locus curves cross the imaginary axis or if a root-locus curve is tangent

y
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to the imaginary axis. These are determined later by using the t-decomposition
method.

The essence of the t-decomposition method of stability analysis is now pre-
sented. Consider the function

Wy(s) = 'S (6)

where W2(s) is a ratio of two polynomial equations in s with constant coeffi-
cients, and 1t 1is a time delay. The following theorem is attributed to Lee and
Hsu (ref. 8), where N(1) denotes the number of roots of equation (6) with posi-
tive real parts. The theorem has been reworded for the present application.

Theorem 1. Let s = iw*, where «* > 0, be a purely imaginary root of equa-
tion (6) with corresponding time delay * 2 0. Let ¢ be the corresponding
point of intersection of the testing function W,(iw) with the unit circle in
equation (6). Then,

(1) N(t) increases by 1 if the testing function enters the unit circle at
¢ (which occurs when 1 = % and o = w¥);

(2) N(t) decreases by 1 as 1 1increases across ¥ if the testing func-
tion leaves the unit circle as « 1increases across w¥; and

(3) N(t) remains the same as <t increases across <t*¥ if the testing
function remains on the same side of the unit circle as w increases across
#*
w*,

Lee and Hsu used the results of theorem 1 to examine the stability of a
retarded dynamical system with one constant time delay +t. The development of
the theorem is of such generality, however, that the only restriction required
on the testing function w2(s) in equation (6) is that it be analytic (or reg-
ular) at the intersection points being considered. A significant feature of the
theorem is that it is not necessary to be concerned with finding the first non-
zero derivative of the real part of the root-locus curves with respect to K, or
whether the intersection points are simple.

Now, equation (3) is expressed in a form for which the t~-decomposition

method is applicable. Taking the exponential of both sides of equation (3)
results in

Ks

W(s) e (7)

where

f(s;ty)

W(s) e (8)

Equation (7) is in the standard form for application of the 1~-decomposition
method, where K 1is playing the role of a time delay; and a modified testing
function has been introduced in equation (8).



The following theorem results from the general proof of theorem 1 with
equation (6) replaced by equation (7).

Theorem 2. Let s = iw* be a purely imaginary root of equation (7) when
K = K¥, Moreover, let ag < w*¥ and o, > w¥*¥ be real numbers for which W(ia1)
and W(iay) are defined and let w¥ be the only intersection point in the
interval [aq,0,]. Then for ¢ an arbitrarily small positive number,

(1) N(K*¥+¢)

N(K#*) + 1 if [W(iey)l > 1 and 1W(iey)| <1

(2) N(K*+e)

N(K¥) = 1 if lW(ie)| <1 and lw(iey)| > 1

(3) N(K*+c) = N(K¥) if both |W(ia1)| and W(ioy)l are greater than 1,
or if both are less than 1.

The values of K¥ at the intersection points are ordered by increasing magni-
tudes to obtain the change in the stability as K 1increases to its final
desired value, say K, .

Geometrically, items (1), (2), and (3) of theorem 2 correspond, respec-
tively, to the testing function W(iw) entering, leaving, and being tangent to
the unit circle, The testing function is evaluated along the imaginary axis to
infer the directions in which the root-locus curves cross the imaginary axis.

Theorem 2 is applied as follows: Let s = jw¥ be a point of intersection
of a root-locus curve of equation (3) with the imaginary axis when K = K¥,
Thus, o = w¥ and K = K*¥ satisfy equations (4) and (5). This root-locus
curve is common to both equations (3) and (7). In addition, there are no extra
root-locus curves of equation (7), which are not common to equation (2), that
have this intersection point when K = K¥, If o = w* is the only value of w
in the interval [a1,a2] for which the testing function W(iw) intersects the
imaginary axis, then the change in the stability at this intersection point is
determined by computing |W(iey)| and |W(ie,)|. For example, from item (1) of
theorem 2, if Iw(ia1)' >1 and [|W(iey)| < 1, as indicated in figure 1, then
the system gains exactly one root with positive real part as K increases
across K¥; that is, N(K¥+e) = N(K¥) + 1.

[Wiieh]

b e — =

0 O

Figure 1.- Hypothetical variation of the absolute value of the
testing function, evaluated along the imaginary axis.



The magnitude of W(iw) in figure 1 intersecting the horizontal dashed
line at 1 corresponds to W(iw) intersecting the unit circle. Hence, in fig-
ure 1, W(iw) enters the unit circle as w increases across uw¥.

Procedure

To apply the stability procedure of this paper, w is incremented in the
following equations: ’

s maiw (9)
£(s;1y)

Im(K) = Im ——— (10)

s

f(s;rg)j

Re(K) = Re| ——— (1)
L s
f(s;t,)

TPRTE Pt

(12)

The coefficient K 1in equation (3) is assumed to be a real number. If

Im(K) = 0 in equation (10) for some value of w during the incrementation, say
w¥, then equation (3) is satisfied by s o iw¥ when K in equation (11) has
the real value denoted by K¥*, Theorem 2 is applied by examining tabulated val-
ues of equation (12) as w increases across w¥,

Since w > 0 is incremented in equations (9) to (12), there is the gues-
tion of when to terminate the iteration process. It is always possible to com-
pute an upper bound on w for K 2 Km. The procedure is illustrated in a subse-
quent application. It is important to choose the increment on w small enough

to preclude overlooking any values of s = 1w which satisfy the characteristic
equation when K X K. °

APPLICATION
Consider the following equation from reference 6 (in the present notation):

d2x

dx
;;E(t) + 2K aE(t-T1) + x(t-12) a0 (13)

where T4 and T, are fixed time delays, and the real number K >0 is a sys-
tem coefficient.



The characteristic equation associated with equation (13) is

-T,8 -T,8
1 2
s + 2Kse + e =0 (14)
with K = 0.5, 74 = 0.8, and 7, = 0.2, the solution of equation (13) is asymp-
totically stable; that is, all roots of equation (14) have negative real parts
(refs. 6 and 7).
Now, as K is varied, root-locus curves may possibly intersect the imagi-

nary axis and change the stability of equation (13). To examine this possibil~
ity, write equation (14) as

1 -T,8) Tq8
Ks=-§<52+e >e (15)
which is in the form of equation (3) with
1 -—Tzs T1s
f(s51g) = = §<52 + € >e (16)

Then, with equation (16), equations (9) to (12) along with the t-decomposition
theorem are subsequently used.

Iteration .Bounds on w

Maximum bound.- Setting s = iw in equation (14) gives

-iwT -:i_ua'c2
- + 2Kiuwe + e = 0 (17)

Solving equation (17) for @2 and taking the magnitude of both sides of the

resulting equation gives

lwl? S2(Kwl + 1 (18)
But, since w >0 and K > 0,

0 S 2Kw + 1 S 2K 0+ 1 (19)
where K < K, and K, 1s a bound on K.

When w = 0, the right side of equation (19) exceeds the left side; how-

ever, as w increases, the left side eventually dominates the right side.
Thus, there exists a maximum value of w, say wn, beyond which equation (19)
is no longer satisfied. It is not difficult to see that this maximum value of

w 1s the largest positive real root of the equation

w2 - Zme - ‘l =0 (20)



which is

Wy = Ky + Km2 + 1 (21)
Lower bound.- One lower bound on ® 1is zero; however, a larger lower bound

may be desired. In this case, equation (17) can be used to obtain the equation,
or inequality, of magnitudes

| -iwT
2Kiwe (22)

-iwt
P 2' -

e
or,
w? 21 - 2ZKuw (23)

Clearly, for w = 0, equation (23) is not satisfied. As w increases, there is
a least value of w for which equation (23) is satisfied.. This least value

will be smaller for larger constant values of K. Thus, for K < K,s» the least
value of w which satisfies B

2 >

W 21 - 2K (24)

is taken as a lower bound on w. This lower bound, called , is the least
positive real rcot of the equation

(1)2 + 2Kmm - 1 = O (25)

which is

w, = Ky o+ Ky (26)

Hence, as K 1is increased to K
imaginary axis in the interval

m» all root-locus curves must intersect the

w w

A

L Y (27)

A

Specific Computations
As mentioned previously, equation (13) is asymptotically stable when
Ty = 0.8, T, = 0.2, and K = 0.5. It is desired to determine the change in

stability as K 1is varied from 0.5 to 1 with the values of 71, and s held
fixed. In this case, eaquation (16) becomes

1
f(s;rg) = - 5(32 + e—O.ZS)eO.Bs (28)

and equation (27) becomes

0.41 Sw 2.5 (29)



With f(S;Tl) given by equation (28), equations (9) to (12) were iterated
simultaneously on a digital computer by incrementing w in increments of 0.01
over the interval of values in equation (29).

Table I shows the regions of incremented values where Im(K) changes sign.
The values of © where Im(K) = 0 and the corresponding values of K are
given approximately in the first two columns of table II as w = w¥ and
K = K¥, The results in the third column of table II were determined by examin-
ing |W(iw)l in table I in the neighborhood of w¥ and applying the
t-decomposition theorem. As mentioned previously, the retarded system is known
to be asymptotically stable for K = 0.5. Thus, for K between approximately
K¥ = 0.16 and 0.63, the system will remain asymptotically stable. The system is
unstable in the approximate intervals 0 X K < 0.16 and 0.63 <K £ 1. To exam-
ine values of K greater than K, = 1, larger values of w, 1in equation (21)
may be used.

CONCLUDING REMARKS

Once the stability condition (stable or unstable) of a retarded system is
determined for a fixed set of time delays, it may be of interest to determine
the further change in the stability condition as a system coefficient is varied,
with the time delays held fixed. This latter problem is examined in this paper
by casting it in a form for which the t-decomposition method is applicable. The
approach involves a rearrangement of the characteristic equation so that the
coefficient to be varied plays the role of a time delay. The 1-decomposition
method is applied then to obtain changes in the stability condition as the coef-
ficient is varied over a range of values.

The method has been applied to a second-order differential equation with
time delays in the velocity and displacement terms. Ranges of values of a coef-
ficient for which the system is stable and unstable were computed.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

January 13, 1977
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TABLE I.- INCREMENTAL VALUES

TABLE II.- VALUES OF w¥, K¥, AND N(K¥4+¢)

w* l K = K¥* L N(K¥+¢) '
1:i2 0.16 -1
1.77 .63

N

NASA-LangTey, 1977 L=11298

Re(K) Im(K) JW(iw) |
. ol R R . _ I _
-0.2309 0.9887 0.6667
.1382 .0135 .9854
1452 .0087 .9905
1523 .0040 .9956
.1593 ~.0005 1.0005
1661 -.0048 1.0055
1736 ~.0090 1.0103
L6077 ~.0103 .0180
6144 -.0066 1.0115
6211 -.0028 .00k49
6277 0012 .9979
.6343 .0052 .9908
6408 .0093 .9835
L9371 5343 2629
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